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ABSTRACT 

Customer churn is one of the principal issues in the Telecommunications Industry. Clients 

massively change their specialist co-ops within the limited ability to focus time. Client Churn 

implies lost entire or part of the administrations from the client by any association. In this paper, 

we will talk about the fundamental issue – What makes a client remain and what influences them 

to go? We have utilized the telecommunications market to break down the stirring issue and have 

taken Watson Analysis Dataset for our case study. The purposes behind churn, as observed from 

a market viewpoint are – in light of the fact that it's simple for the clients to switch supplier, it is 

hard to oversee or completely use the client information, the administrations given by the 

association are inadequate and the clients are not fulfilled. To comprehend the issue, we have 

utilized different tree-based classifiers in Python and did the examination of the top highlights 

which account in understanding the conduct of the clients. Lastly, we have depicted the 

constraints and future examination on it. 

Keywords — churn prediction, data mining, decision trees, xGBoost, random forest, 

analysis
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CHAPTER 1 - INTRODUCTION 

Customer churn is an imperative issue that is frequently connected with the existing cycle of the 

business. At the point when the business is in a development period of its life cycle, deals are 

expanding exponentially and the number of new clients to a great extent dwarfs the number of 

churners. On the opposite side, organizations in a developed period of in their life cycle set their 

emphasis on decreasing the rate of customer churn. 

The fundamental reasons for customer churn are divided into two groups: accidental and 

intentional. Accidental churn happens when the conditions are changing so keeps the clients 

from utilizing the services later on, for instance financial conditions that make benefits 

unreasonably costly for the client. Intentional churn happens when the clients change to another 

organization that gives comparable services, like better ideas from rivalry, further developed 

services and better cost for a similar service. 

In recent years, churn prediction is becoming a very important issue in the telecommunications 

industry. In order to deal with this problem, the telecom operators must recognize these 

customers before they churn. Therefore, developing a unique classifier that will predict future 

churns is vital.  This classifier must be able to recognize users who have a tendency to churn in 

the near future, so the operator will be able to react promptly with appropriate discounts and 

promotions.  The most frequently used techniques for this purpose are learning algorithms for 

classification, like decision trees, logistics regression, k-nearest neighbors,  Naïve  Bayes,  neural 

networks,  etc.  Moreover, researches should focus on identifying new features that are most 

effective in predicting customer churn. In this paper, we aimed to investigate the main reasons 

for churn among customers using Telco customer data.  For this purpose, we gathered and 

processed the data, and based on these data, we implemented and compared four well-known 
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machine learning algorithms. Additionally, we identified the most important factors which are 

crucial for the customers to churn, that are tariff plan, subscriber contract, duration (length) of 

the contract, number of services, number of outgoing calls per month, and average call duration 

in the last month.  

RESEARCH GOAL 

The problem statement for this research is that ABC Inc. is now concerned about the number of 

customers leaving their landline business for cable competitors. The Data Science objective 

behind the problem statement is to build a machine learning model which predicts customer 

churn and also gives insights into the influencing factors and prescribe potential solutions to 

avoid churn. 
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CHAPTER 2 - LITERATURE REVIEW 

Understanding the factors behind customer churn is very important in any business. Different 

market domains have some similar factors like the price offered to the customer, the benefits 

provided, the number of years for which customer is entangled with the organization, etc.  Earlier 

papers have used Data analysis to understand customer behaviors using the regression models. 

Some research papers have used clustering to segment the groups of the customer of similar 

behaviors. One of those research papers is “A Review on Customer Churn Prediction in 

Telecommunication Using Data Mining Techniques (S. Babu1, Dr. N. R. Ananthanarayanan2)” 

where the authors have used the Data Mining techniques to predict customer churn. Research on 

such behaviors helps companies to take the necessary steps to retain customers. In this paper, we 

are going to address specifically the telecommunications industry and categorize the factors 

which contribute to it. 

Challenges in Customer Churn 

The objective of customer churn prediction is to predict the impending churners based on the 

predefined forecast horizon, assuming the data related with each subscriber in the network. 

According to Umayaparvathi & Iyakutti (2012), the customer churn prediction problem is 

normally characterized into three major stages, namely, training stage, test stage and prediction 

stage. In the training phase, the contribution for customer churn problem is from the historical 

data such as call details and personal and/or business customers’ data, which has been obtained 

and retained by the telecommunications service providers. Furthermore, in the training stage, the 

labels are structured in the list of churners’ records. In the test stage, the trained model with the 

highest accuracy is tested to predict the churners’ records from the actual dataset which does not 
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contain any churn label. Lastly, in the prediction stage, which is also known as the knowledge 

discovery process, the problem is classified as predictive modeling or predictive mining. 

Customer churn prediction helps the customer relationship management (CRM) to avoid 

customers who are expected to churn in future by proposing retention policies and offering better 

incentives or packages to attract the potential churners in order to retain them. Hence, the 

possible loss of the company’s revenue can be prevented. (Umayaparvathi & Iyakutti, 2012) 

Shaaban et al. (2012) stated that there are two types of churners, namely, involuntary and 

voluntary. Involuntary churners are the list of customers that are removed by the 

telecommunications service provider, itself, due to non-payment status, deception and non-usage 

of the phone. Meanwhile, voluntary churners are the customers that decide to terminate their 

service with the respective telecommunications service provider. Involuntary churners are easy 

to be recognized; however, the voluntary churners are more difficult to be identified. Generally, 

the customer churn problem in the telecommunications industry is voluntary. 

 

Figure 1- Customer Churn Types 

 

It can be seen in Figure 1 that voluntary churn is separated into two sub-categories which are 

deliberate churn and incidental churn. Deliberate churn results from factors such as economic 
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factors (example: price sensitivity), technology factors (example: more innovative technology is 

offered by another telecommunications service provider), poor customer service factors and 

others inconvenience related factors. Incidental churn is not caused by customers’ plan, but 

because of sudden changes occurred in the customers’ lives, such as changes in financial 

situation, geographical or relocation changes and others. (Shaaban et al., 2012)  

 

Machine Learning Algorithms for Customer Churn 

Many data mining algorithms have been reviewed and SVM, Bayes Network, decision tree, 

ANN, amongst others, were found to be the most popular algorithm in customer churn 

prediction. Some researchers also have combined a few algorithms and established an innovative 

algorithm in order to produce better accuracy rate. Additionally, the enhanced algorithm 

methodology such as AdaBoost was found to be very valuable, as it can enhance the accuracy 

performance of weak algorithms. However, the accuracy performance of each algorithm differs 

in every research. This is due to the different dataset used and the different input variables 

chosen for the experiment.  

Most of the literature focused more on data mining algorithms, but only a few of them focus on 

distinguishing the important input variables for churn prediction to be used for data mining 

algorithms implementation. Additionally, only noticeably one literature that had actually 

combined social network based variables in the input variables for data mining algorithms 

implementation. Moreover, the class imbalance problem was found to be not addressed on some 

of the literature. 
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Figure 2 – Data Mining to gain insights 
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            CHAPTER 3 - DATA DESCRIPTION 

The telecommunications industry is concerned with the number of customers leaving 

their landline business for cable competitors. They need to understand who is leaving and what 

factors influence them. This project is focused on building a machine learning model which 

predicts customer churn and also gives insights into the influencing factors and prescribe 

potential solutions to avoid churn. 

Firstly it is very important for us to understand the various attributes of a customer. We 

would need to understand the types of services and the price they are offered; various other 

customer relationships attributes such as (age, sex, dependents etc.) 

The following paragraphs will talk in details about the steps taken at each stage of the 

research. 

1. Data Collection 

The case study in the project is a telecommunications company. We have collected the data from 

the IBM website - “Using Customer Behavior Data to Improve Customer Retention” (Apr, 

2015). The link to the data can be found here - 

https://www.ibm.com/communities/analytics/watson-analytics-blog/predictive-insights-in-the-

telco-customer-churn-data-set/ 

The identified data sets are divided into the following segments - customer master, enrollments 

and billing tables. These tables have historical information but for this exercise we will be 

considering the latest values of all the attributes. A data extract from these tables is obtained to 

further cleanse, process and create a new feature from the existing attributes. 

There are in total 7055 records with 20 features and the data set includes information about the 

following: 

https://www.ibm.com/communities/analytics/watson-analytics-blog/predictive-insights-in-the-telco-customer-churn-data-set/
https://www.ibm.com/communities/analytics/watson-analytics-blog/predictive-insights-in-the-telco-customer-churn-data-set/
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 Customers who left within the last month – the column is called Churn 

 Services that each customer has signed up for – phone, multiple lines, internet, online 

security, online backup, device protection, tech support, and streaming TV and movies 

 Customer account information – how long they’ve been a customer, contract, payment 

method, paperless billing, monthly charges, and total charges 

 Demographic info about customers – gender, age range, and if they have partners and 

dependents 

Following are the features present in the dataset: 

• customerID - Customer ID 

• gender - Whether the customer is a male or a female 

• SeniorCitizen - Whether the customer is a senior citizen or not (1, 0) 

• Partner - Whether the customer has a partner or not (Yes, No) 

• Dependents - Whether the customer has dependents or not (Yes, No) 

• Tenure - Number of months the customer has stayed with the company 

• PhoneService - Whether the customer has a phone service or not (Yes, No) 

• MultipleLines - Whether the customer has multiple lines or not (Yes, No, No phone 

service) 

• InternetService - Customer’s internet service provider (DSL, Fiber optic, No) 

• OnlineSecurity - Whether the customer has online security or not (Yes, No, No internet 

service) 

• OnlineBackup - Whether the customer has an online backup or not (Yes, No, No internet 

service) 
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• DeviceProtection - Whether the customer has device protection or not (Yes, No, No 

internet service) 

• TechSupport - Whether the customer has tech support or not (Yes, No, No internet 

service) 

• StreamingTV - Whether the customer has streaming TV or not (Yes, No, No internet 

service) 

• StreamingMovies - Whether the customer has streaming movies or not (Yes, No, No 

internet service) 

• Contract - The contract term of the customer (Month-to-month, One year, Two years) 

• PaperlessBilling - Whether the customer has paperless billing or not (Yes, No) 

• PaymentMethod - The customer’s payment method (Electronic check, Mailed check, 

Bank transfer (automatic), Credit card (automatic)) 

• MonthlyCharges - The amount charged to the customer monthly 

• TotalCharges - The total amount charged to the customer 

• Churn - Whether the customer churned or not (Yes or No) 

 

2. Data Preparation 

Each table stores customer ID which will be our primary key to combine the data sets. Some 

tables such as billing dataset consist of transactional information which is then aggregated to a 

customer level. Finally we will have a data set wherein each row in the dataset represents a 

customer and their attributes.  

After the base data set is created, we do some exploratory data analysis like looking at churn by 

gender, type of service, tenure etc. to understand the data better.  
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Figure 3 - Customer Churn Ratio 

The following are the analysis of various attributes in the dataset. We have compared 

some major attributes in the dataset from different segments: 

1. Customer Master Data 

  

Figure 4 - Gender vs Customer Churn        Figure 5 - Partner vs Customer Churn 
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Figure 6 - Dependents vs Customer Churn           Figure 7 – Senior Citizen vs Customer Churn 

                                                      Figure 8 - Tenure vs Customer Churn            
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2. Customer Enrollment Data 

 

   

Figure 9 – Phone Service vs Customer Churn          Figure 10- Multiple Lines vs Customer Churn    

   

Figure 11- Internet Service vs Customer Churn                    Figure 12- Online Security vs Customer Churn    
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Figure 13- Online Backup vs Customer Churn         Figure 14- Device Protection vs Customer Churn 

  

Figure 15- Tech Support vs Customer Churn         Figure 16- Streaming TV vs Customer Churn          

 

Figure 17- Streaming Movies vs Customer Churn 

3. Customer Billing Dataset 
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Figure 18- Contract vs Customer Churn  Figure 19- Paperless Billing vs Customer Churn 

  

Figure 20- Payment Method vs Customer Churn 

 

Figure 21- Monthly Charges vs Customer Churn 
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Figure 22- Total Charges vs Customer Churn 
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     Figure 23- Heatmap for the Variables 

Since we do not understand the entire spectrum and operations of this company, creating new 

feature such as interaction variables will be difficult. At the same time we do not want to choose 

only a set of calculations to engineer features which might introduce bias to the learning process.  
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To overcome this challenge, we will use a python package – FeatureTools; this will help us in 

creating interaction variables and also perform deep feature synthesis which will result in 

creating a lot of features with all permutations and combinations. 

Using the FeatureTools library in Python, we were able to create 724 features out of the existing 

19 features. This used a number of combinations and mathematical transformations to create the 

new features. Some of the transformations were based on the following : 'add_numeric_scalar', 

'multiply_numeric', 'cum_mean', 'absolute', 'cum_max', 'divide_by_feature', 'add_numeric', etc.  

A sample of the newly created features is given below and the full feature collection is provided 

in Table 2. 

 

Figure 24- FeatureTools to create new variables from existing ones 
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              CHAPTER 4 - DATA ANALYTICS 

 

1. Feature Selections 

Since we used feature tools to prepare new attributes which are a lot, we will have another 

problem which is what features to consider. Since this is a classification problem and has a lot of 

categorical inputs, tree-based classification models are a good fit.  

We will start fitting a regular decision tree or random forest and extract the feature which splits a 

lot of data across estimators. Getting the top variables which explain most of the variations can 

help us in feature selection.  

Another way we could possibly try is dimensionality reduction via methods like PCA. But 

unfortunately transforming PCA attributes are tough and since explaining influencing variables 

are an important part of our objective we will go with the first approach. 

We tried various approaches to understand the feature selection like decision Tree, Random 

Forest, LightGBM and xGBoost. The best model to predict the top features to classify the 

customers was xGBoost. Hence, we used it to get the top features useful for classifying the 

customers.  

We further explored the model using only the top features to understand the variation of the 

AUROC curve and found that the model was able to perform well with only the top features 

when given in the model. 
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Figure 25- Extracting the top features from xGBoost Model 

 

After applying only the top important features to reduce the dimensionality, we got the following 

importance of variables: 
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Figure 27- Getting the importance of top features from final xGBoostmodel 

This explains that the top features like Contract, TechSupport, Online Security and Tenure are 

very important attributes in classifying the customers as churning or not. 

 

2. Model Building for Customer Churn 

Once we have roughly the important features, we can then try various tree-based algorithms, and 

apply hyper-parameter techniques such as grid/ random search or even Bayesian optimization to 

get the best estimators.  

The model can be evaluated on an AUROC curve and thresholds can be adjusted to the best 

estimator. 

 

After trying the various machine learning algorithms, the following are the results from them: 
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xGBoost: 

 

Figure 28- xGBoost ROC Curve 

 

Random forest: 

 

Figure 29- Random Forest ROC Curve 
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Decision Tree: 

 

Figure 30- Decision tree ROC curve 

 

From the AUROC, we can see that the xGBoost gave the best results because we were able to 

classify the customers who are churning and not. We were also able to understand what are the 

top factors which are driving this churn, so that we can help the business people to drive the 

behavior which would reduce customer churn. 
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             CHAPTER 5 - VISUALIZATION 

Integrate all these results from the model and create a visualization to possibly show the 

causal factors and can be presented to the leadership. This can also help us understand 

prescriptive actions which should be integrated into our visualization and then the final 

version can be circulated to all the relationship managers to take actions. 

 

Figure 31- Visualization process 

 

1. LIME Analysis 

LIME ( Local Interpretable Model-agnostic Explanations )is a novel explanation 

technique that explains the prediction of any classifier in an interpretable and faithful manner 

by learning an interpretable model locally around the prediction. 

What has LIME had to offer on model interpretability? 

1. A consistent model agnostic explainer [ LIME ]. 

2. A method to select a representative set with explanations [ SP-LIME ] to make sure 

model behaves consistently while replicating human logic. This representative set would 

provide an intuitive global understanding of the model. 
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LIME explains a prediction so that even the non-experts could compare and improve 

on an untrustworthy model through feature engineering. An ideal model explainer should 

contain the following desirable properties: 

Interpretable - It should provide qualitative understanding between the input variables 

and the response. It should be easy to understand. 

Local Fidelity - It might not be possible for an explanation to be completely faithful 

unless it is the complete description of the model itself. Having said that it should be at least 

locally faithful i.e it must replicate model’s behavior in the vicinity of the instance being 

predicted. 

Model Agnostic - The explainer should be able to explain any model and should not 

make any assumptions about the model while providing explanations. 

Global perspective - The explainer should explain a representative set to the user, so 

that the user has a global intuition of the model. 

 

 

Figure 32- LIME prediction for a moderate customer 
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Figure 33- LIME prediction for a churning customer 

 

 

Figure 34- LIME prediction for a non-churning customer 

 

Model explainability is a priority in today’s data science community. As data scientists, we want 

to prevent model bias and help decision makers understand how to use our models in the right 

way. 

In the above figures, we have added factors of three customers, one who is likely to churn, one 

who is likely to not churn and one who is a moderate customer because we cannot say a lot about 

them.   
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CHAPTER 8 - CONCLUSION AND FUTURE RESEARCH 

CONCLUSION 

The predictions from the ML model can help in understanding the customers who 

might leave and their service. With this information the company can do the following:  

✓ Relationship Managers(RM)  get a daily feed on who has the propensity to churn 

and what are the influencing factors 

• This can help trigger a conversation with the customer and understand their 

pain points and possibly fix the situation even before the churn occurs 

• This can create more customer entanglement as the RM would reach out to 

them anticipating issues will eventually increase their lifetime value  

✓ Handling customer churn will help us reduce the number of dispute calls, this can 

help us in reduce the operational cost of call centers   

 

FUTURE RESEARCH 

o The model can be deployed to run on a regular basis to understand the changes in 

the behavior of the customers and the relationship managers can act accordingly  

o Collect more data from customers going forward such as reviews, ratings etc. to 

understand more about why a certain group of customers might be leaving – 

Opportunity to apply Natural Language processing to free form textual reviews  

o Access to the CRM information which has call logs, the reason for call etc.. and 

find out patterns of leading indicators for attrition. 
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o Capture the geographic information of the customer and correlate with some of 

the demographic attributes to find out patterns around customer churn and 

geography  

o Adding in other telecommunications providers data might help us understand the 

market share 

o Adding the total cost of the customer will help us understand profitability at a 

customer level. This can then be married to all the data sets mentioned above to 

understand an ideal profile of a customer and drive new customer acquisition 

strategies  

o Gaining visibility to promotional information will help us understand the lift of 

sales for each type of promotion; combining these data sets with the above ones 

will also help tailor pricing and promotional strategies  

By deploying data systems which can capture all these data sets we will be able to understand 

a complete profile of each customer and their activity and not only reduce customer churn 

but can also drive incremental revenue. 



www.manaraa.com

28 

 

REFERENCES 

Singh, J., and D. Sirdeshmukh. “Agency and Trust Mechanisms in Consumer Satisfaction and Loyalty 

Judgments.” Journal of the Academy of Marketing Science 28, no. 1 (January 1, 2000): 150–67. 

https://doi.org/10.1177/0092070300281014. 

Siguaw, Judy A, Sheryl E Kimes, and Jule B Gassenheimer. “B2B Sales Force Productivity: 

Applications of Revenue Management Strategies to Sales Management.” Industrial Marketing 

Management 32, no. 7 (October 2003): 539–51. https://doi.org/10.1016/S0019-8501(02)00278-

X. 

Beck, Norbert, and David Rygl. “Categorization of Multiple Channel Retailing in Multi-, Cross-, and 

Omni‐Channel Retailing for Retailers and Retailing.” Journal of Retailing and Consumer 

Services 27 (November 2015): 170–78. https://doi.org/10.1016/j.jretconser.2015.08.001. 

Hosseini, Seyed Mohammad Seyed, Anahita Maleki, and Mohammad Reza Gholamian. “Cluster 

Analysis Using Data Mining Approach to Develop CRM Methodology to Assess the Customer 

Loyalty.” Expert Systems with Applications 37, no. 7 (July 2010): 5259–64. 

https://doi.org/10.1016/j.eswa.2009.12.070. 

McKechnie, Sally. “Consumer Buying Behaviour in Financial Services: An Overview.” International 

Journal of Bank Marketing 10, no. 5 (May 1992): 5–39. 

https://doi.org/10.1108/02652329210016803. 

Ahuja, Vandana, and Yajulu Medury. “Corporate Blogs as E-CRM Tools – Building Consumer 

Engagement through Content Management.” Journal of Database Marketing & Customer 

Strategy Management 17, no. 2 (June 1, 2010): 91–105. https://doi.org/10.1057/dbm.2010.8. 

Sashi, C.M. “Customer Engagement, Buyer‐seller Relationships, and Social Media.” Management 

Decision 50, no. 2 (March 2, 2012): 253–72. https://doi.org/10.1108/00251741211203551. 

Dick, A. S., and K. Basu. “Customer Loyalty: Toward an Integrated Conceptual Framework.” Journal 

of the Academy of Marketing Science 22, no. 2 (March 1, 1994): 99–113. 

https://doi.org/10.1177/0092070394222001. 

Yi, Youjae, Rajan Nataraajan, and Taeshik Gong. “Customer Participation and Citizenship Behavioral 

Influences on Employee Performance, Satisfaction, Commitment, and Turnover Intention.” 

Journal of Business Research 64, no. 1 (January 2011): 87–95. 

https://doi.org/10.1016/j.jbusres.2009.12.007. 

Kim, Su-Yeon, Tae-Soo Jung, Eui-Ho Suh, and Hyun-Seok Hwang. “Customer Segmentation and 

Strategy Development Based on Customer Lifetime Value: A Case Study.” Expert Systems with 

Applications 31, no. 1 (July 2006): 101–7. https://doi.org/10.1016/j.eswa.2005.09.004. 

Kandampully, Jay, and Hsin‐Hui Hu. “Do Hoteliers Need to Manage Image to Retain Loyal 

Customers?” International Journal of Contemporary Hospitality Management 19, no. 6 (August 

28, 2007): 435–43. https://doi.org/10.1108/09596110710775101. 

McEachern, Morven G., Monika J.A. Schröder, Joyce Willock, Jeryl Whitelock, and Roger Mason. 

“Exploring Ethical Brand Extensions and Consumer Buying Behaviour: The RSPCA and the 

‘Freedom Food’ Brand.” Journal of Product & Brand Management 16, no. 3 (June 5, 2007): 

168–77. https://doi.org/10.1108/10610420710751546. 

Verhoef, Peter C., P.K. Kannan, and J. Jeffrey Inman. “From Multi-Channel Retailing to Omni-

Channel Retailing.” Journal of Retailing 91, no. 2 (June 2015): 174–81. 

https://doi.org/10.1016/j.jretai.2015.02.005. 

Chang, Hui-Chu, and Hsiao-Ping Tsai. “Group RFM Analysis as a Novel Framework to Discover 

Better Customer Consumption Behavior.” Expert Systems with Applications 38, no. 12 

https://doi.org/10.1177/0092070300281014
https://doi.org/10.1016/S0019-8501(02)00278-X
https://doi.org/10.1016/S0019-8501(02)00278-X
https://doi.org/10.1016/j.jretconser.2015.08.001
https://doi.org/10.1016/j.eswa.2009.12.070
https://doi.org/10.1108/02652329210016803
https://doi.org/10.1057/dbm.2010.8
https://doi.org/10.1108/00251741211203551
https://doi.org/10.1177/0092070394222001
https://doi.org/10.1016/j.jbusres.2009.12.007
https://doi.org/10.1016/j.eswa.2005.09.004
https://doi.org/10.1108/09596110710775101
https://doi.org/10.1108/10610420710751546
https://doi.org/10.1016/j.jretai.2015.02.005


www.manaraa.com

29 

 

(November 2011): 14499–513. https://doi.org/10.1016/j.eswa.2011.05.034. 

Bolton, Ruth N., P. K. Kannan, and Matthew D. Bramlett. “Implications of Loyalty Program 

Membership and Service Experiences for Customer Retention and Value.” Journal of the 

Academy of Marketing Science 28, no. 1 (January 1, 2000): 95–108. 

https://doi.org/10.1177/0092070300281009. 

Noone, Breffni M, Sheryl E Kimes, and Leo M Renaghan. “Integrating Customer Relationship 

Management and Revenue Management: A Hotel Perspective.” Journal of Revenue and Pricing 

Management 2, no. 1 (April 2003): 7–21. https://doi.org/10.1057/palgrave.rpm.5170045. 

Miles, Morgan, and covin. “Miles, M., & Covin, J. (2000). ‘Environmental Marketing: A Source of 

Reputational, Competitive, and Financial Advantage,’ Journal of Business Ethics, 23(3): 299-

311.” Journal of Business Ethics 23 (February 1, 2000): 299–311. 

https://doi.org/10.1023/A:1006214509281. 

Jaakkola, Elina. “Purchase Decision-Making within Professional Consumer Services: Organizational 

or Consumer Buying Behaviour?” Marketing Theory 7, no. 1 (March 2007): 93–108. 

https://doi.org/10.1177/1470593107073847. 

Devabhaktuni, Vijay, Mansoor Alam, Soma Shekara Sreenadh Reddy Depuru, Robert C. Green, 

Douglas Nims, and Craig Near. “Solar Energy: Trends and Enabling Technologies.” Renewable 

and Sustainable Energy Reviews 19 (March 2013): 555–64. 

https://doi.org/10.1016/j.rser.2012.11.024. 

Hennig‐Thurau, Thorsten, and Alexander Klee. “The Impact of Customer Satisfaction and 

Relationship Quality on Customer Retention: A Critical Reassessment and Model 

Development.” Psychology & Marketing 14, no. 8 (December 1, 1997): 737–64. 

https://doi.org/10.1002/(SICI)1520-6793(199712)14:8<737::AID-MAR2>3.0.CO;2-F. 

Razzouk, Nabil, Victoria Seitz, and David Michael Wells. “The Importance of Brand Equity on 

Purchasing Consumer Durables: An Analysis of Home Air‐conditioning Systems.” Journal of 

Consumer Marketing 27, no. 3 (May 4, 2010): 236–42. 

https://doi.org/10.1108/07363761011038301. 

Taylor, Steven A., Kevin Celuch, and Stephen Goodwin. “The Importance of Brand Equity to 

Customer Loyalty.” Journal of Product & Brand Management 13, no. 4 (June 2004): 217–27. 

https://doi.org/10.1108/10610420410546934. 

Prabhu, Jaideep, and Chatura Ranaweera. “The Influence of Satisfaction, Trust and Switching 

Barriers on Customer Retention in a Continuous Purchasing Setting.” International Journal of 

Service Industry Management 14, no. 4 (October 1, 2003): 374–95. 

https://doi.org/10.1108/09564230310489231. 

Payne, Adrian, and Pennie Frow. “The Role of Multichannel Integration in Customer Relationship 

Management.” Industrial Marketing Management 33, no. 6 (August 2004): 527–38. 

https://doi.org/10.1016/j.indmarman.2004.02.002. 

https://doi.org/10.1016/j.eswa.2011.05.034
https://doi.org/10.1177/0092070300281009
https://doi.org/10.1057/palgrave.rpm.5170045
https://doi.org/10.1023/A:1006214509281
https://doi.org/10.1177/1470593107073847
https://doi.org/10.1016/j.rser.2012.11.024
https://doi.org/10.1002/(SICI)1520-6793(199712)14:8%3c737::AID-MAR2%3e3.0.CO;2-F
https://doi.org/10.1108/07363761011038301
https://doi.org/10.1108/10610420410546934
https://doi.org/10.1108/09564230310489231
https://doi.org/10.1016/j.indmarman.2004.02.002


www.manaraa.com

30 

 

APPENDIX 

Table 1: 

 
 

 
 



www.manaraa.com

31 

 

 
 

 


	Customer churn: A study of factors affecting customer churn using machine learning
	Recommended Citation

	tmp.1556218612.pdf.juX10

